SUPPLEMENTAL MATERIALS

ASCE Journal of Infrastructure Systems

Investigating Social Vulnerability, Exposure, and Transport Network Disruption in the Mid-Atlantic Region

Luis R. Delgado, Michael Gomez, Selena Hinojos, Lauren Dennis, and Caitlin Grady

DOI: 10.1061/JITSE4.ISENG-2258

© ASCE 2023

www.ascelibrary.org

Supplementary Material

Detailed Methods

Table S-1: Data Source Details

Data Source	Use	Variables	Reference
Freight Analysis	Model Highway	Shape file of highway network, Roads	1
Framework V4	Network		
Freight Analysis	Modified county to	Percentage of each SCTG class in each	1
Framework V4	county freight flow to	state transported by truck, see table A-2	
	only estimate truck	below.	
	freight, not other		
	modes		
County Scale	O-D flows between	Volume of freight flow between each	2
Commodity Flow	counties	county, by SCTG class	-
N-CAST	Truck average travel	Truck average travel time	3
	time		4
Google Maps	Truck average travel	Truck average travel time	4
0010 537	time		5
2019 5 Year American	Demographic	% Black or African American,	5
Community Survey	information for SoVI	% Hispanic or Latino, % of Alaska	
		Native and American Indian $P_{\text{rescalation}} = 0$	
		Population, $\%$ of population <18,	
		% female headed households	
		% female-headed households, with	
		children <18 % male-headed	
		households, with children <18.	
		% female-headed households, living	
		alone, % male-headed households,	
		living alone, % population with no high	
		school diploma, % of civilian	
		noninstitutionalized population with a	
		disability, % living in poverty, % of	
		mobile home housing units, % multi-	
		family housing units, % of housing	
		units built up to 1989	

The County Tonnage Flow Data from Lin et al.² utilized did not include the transportation mode, however based on these percentages provided by FAF v4¹, we multiplied the county to county flows from Lin et al by the percentages of truck-transported goods for each SCTG class to produce our final flow volumes.

Table **S-2**:FAF4 Agricultural/food Standard Classification of Transported Goods (SCTG) Flow Data¹

FAF4 Data Transportatio n Statistics ¹	SCTG 1 Live Animal s and Fish	<u>SCTG</u> 2 Cereal Grains	SCTG 3 Other Agricultura I Products	SCTG 4 Anima I Feed	SCTG 5 Meat and Seafoo d	SCTG 6 Milled Grain Product S	SCT G 7 Other Foods
% Truck AVG. NJ Exports	100.0%	97.2%	100.0%	98.9%	99.8%	99.9%	97.8%
% Truck AVG. NY Exports	100.0%	100.0 %	99.9%	100.0%	100.0%	98.6%	99.7%
% Truck AVG. PA Exports	100.0%	100.0 %	100.0%	99.8%	100.0%	99.9%	99.9%

Theoretical Justification of SoVI variable selection.

Race and Ethnicity

Present literature has identified an increased statistical likelihood for households headed by people of color, namely Black, Hispanic, and American Indian or Alaska Natives (AIAN), as being disproportionately affected by food, energy, or water insecurity.^{6–12} Systematic policies and practices are embedded in systems in the U.S. for economic, social, and/or political exclusions, which prevent these communities from accessing the same basic household food, water, and energy resources as easily as non-Hispanic, white households.^{9,13,14} Note that citizenship status^{15,16} was excluded from the SoVI model due to multicollinearity issues (e.g., citizenship status with Hispanic variable).

Economic

Low-income households are a predictor of household food, energy, and water insecurity.^{6–8,17–19} Low-income households are also likely to have poor preparation behavior in relation to food, water, energy infrastructure service disruptions,⁸ which could theoretically decrease the household's ability to respond to critical infrastructure disruptions safely and effectively. For example, of the 5.3 million food-insecure households in the U.S., the majority fear that they do not have the necessary financial resources and income to supply food for their household.⁷ Revelations of these sorts highlight the disparities that are felt by food-insecure households and that could be exacerbated in a food, water, energy, critical infrastructure disruption where access might become not only limited but economically impractical. For our study, households at \leq 200% of the Federal Poverty Level (FPL) will be considered based on (1) food-based federal assistance program's FPL requirements such as Supplemental Nutrition Assistance Program (SNAP), Women, Infants and Children (WIC), and the National School Lunch Program (NSLP) in the states of NJ, NY, and PA²⁰ and (2) energy-based federal assistance programs such as the Low-Income Home Energy Assistance Program (LIHEAP) use 150% to 200% as the qualification FPL.²¹

Household Composition

Households comprised of older adults (65 and older),⁹ children (under 18),^{7,11} single men and women with children,⁷ men or women living alone,⁷ females,²² lower educational attainment,^{8,11,22}

and disabled members⁸ have been shown to have increased trends for household food, energy, and/or water insecurity. Overall, disruptions to the food, water, energy nexus resources may be more impactful for these identified population groups.

Household Type

Housing type and tenure have a strong correlation with household water and energy insecurity. Characteristics associated with household water and energy insecurity include renters, multi-family units (5+ units), mobile homes, and households built before 1980/1990s. On the national scale, many unplumbed households are renter-occupied housing and mobile home occupants.^{17,18} Amid a CI disruption, the households lacking complete plumbing may have different and variable incoming water sources and types and could encounter challenges in attaining a safe and reliable water source, especially during a disruption. Furthermore, regionally renters and low-income multi-family housing also face disproportionately higher energy burden costs, where energy burden is the relative cost of household energy to household income.⁹ Renters are also found to have poorer quality housing with less energy-efficient systems and weatherization.²³ Energy insecure household types are also typically built before the 1980/1990's and are multi-family units.^{6,9} Note, that due to multicollinearity issues with multi-family housing units, the renter variable was eliminated from the SoVI model.

Disruption details

We assume that when a node or edge is disrupted, all paths and flows that travel through that node are no longer accessible as a result of the disruption. We simulate impact scenarios where nodes and edges in the network are disrupted, and as a result of this perturbation, shortest paths and food flows traversing that node (edge) are no longer functional. For this work, the shortest paths connectivity will be tested to investigate our network's functionality as follows:

$$PSPI(i) = 100 * \frac{TSPI(i)}{TSP}$$

where PSPI(i) represents the percent of shortest paths impacted as a result of removal of node *i*, *TSP* is the total number of shortest paths between all nodes in the network, and TSPI(i) is the total number of shortest paths affected due to of removal of node *i*.

The impact of a potential disruption can also be quantified by the magnitude of the flow affected.²⁴ If the path(s) between an origin and destination are impacted, then the connectivity and food flow between that pair of nodes are lost. For this work, the impact on food flows after a node disruption is calculated as follows:

$$PFFI(i) = 100 * \frac{TFFI(i)}{TFF}$$

Where *PFFI* represents the percent of food flows impacted as a result of removal of node i, *TFF* is the total food-flow volume between all nodes in the network, and *TFFI(i)* as the total food-flow volume affected due to the removal of node i.

Table S-2: Selected Centrality-based Measures

Index - Centrality	Expression	Description
Betweenness	$x_i = \sum_{OD} \frac{g_{OD}^i}{g_{OD}}$	Number of shortest paths passing by the given element (node/edge) (Brandes, 2001)
Closeness	$c_i = \frac{N-1}{\sum_{i=1}^{N-1} d(i,j)}$	The accessibility of a node in the network; the more central a node is, the closer it is to all other nodes (Freeman, 1979)
Eigenvector	$Ax = \lambda x$	The centrality for a node based on the centrality of its neighbors (Newman, 2010)

Extended Results

Network Disruption(s) and Vulnerability Analysis

Figure S-1: Percentage of shortest paths impacted for a varying random node disruptions scenarios (all, only county, intersection).

Figure S-2: Percentage of food flows impacted for a varying random node disruptions scenarios (all, only county, intersection).

Figure S-3: Percent of foods flows impacted with different capacity reduction scenarios due to random disruption scenarios (Full, 90%, 75%, 50, and 25% node reduction).

Figure S-10: Scatter plot for food-weighted exposure ranking v. amount of network nodes that fall within county

Figure S-11: Scatter plot for food-weighted exposure v. amount of network nodes that fall within county

Social Vulnerability Index By Components

Figure S-14:.Five main groupings of social vulnerability Index: (a) Race/Ethnicity and Housing Type, (b) Poverty, (c) Women and Men Living Alone, (d) Female and Children, (e) American Indian or Alaska Native.

Supplemental References

Hwang HL, Hargrove S, Chin SM, et al. *The Freight Analysis Framework Verson 4 (FAF4) - Building the FAF4 Regional Database: Data Sources and Estimation Methodologies*. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); 2016. doi:10.2172/1325489

- 2. Lin X, Ruess P, Marston L, Konar M. Food flows between counties in the United States. *Environ Res Lett.* Published online June 13, 2019. doi:10.1088/1748-9326/ab29ae
- American Transportation Research Institute. National Corridors Analysis and Speed Tool (N-CAST) – TruckingResearch.org. Published 2012. Accessed October 4, 2022. https://truckingresearch.org/n-cast/
- 4. Google. Google Maps. Google Maps. Published 2022. Accessed October 4, 2022. https://www.google.com/maps/@38.8893304,-77.1600196,15z
- 5. U.S. Census Bureau. American Community Survey Data. Census.gov. Published 2019. Accessed October 4, 2022. https://www.census.gov/programs-surveys/acs/data.html
- Berry C, Hronis C, Woodward M. One in three U.S. households faces a challenge in meeting energy needs - Today in Energy - U.S. Energy Information Administration (EIA). eia.gov. Published 2018. Accessed May 11, 2021. https://www.eia.gov/todayinenergy/detail.php?id=37072
- 7. Coleman-Jensen A. Household Food Security in the United States in 2019. Published online 2020:47.
- Dargin J, Berk A, Mostafavi A. Assessment of household-level food-energy-water nexus vulnerability during disasters. *Sustainable Cities and Society*. 2020;62:102366. doi:10.1016/j.scs.2020.102366
- 9. Drehobl A, Ross L, Ayala R. An Assessment of National and Metropolitan Energy Burden across the United States. Published online 2020:80.
- Harker Steele AJ, Bergstrom JC. "Brr! It's cold in here" measures of household energy insecurity for the United States. *Energy Research & Social Science*. 2021;72:101863. doi:10.1016/j.erss.2020.101863
- Hernández D, Siegel E. Energy insecurity and its ill health effects: A community perspective on the energy-health nexus in New York City. *Energy Research & Social Science*. 2019;47:78-83. doi:10.1016/j.erss.2018.08.011
- Jernigan VBB, Huyser KR, Valdes J, Simonds VW. Food Insecurity among American Indians and Alaska Natives: A National Profile using the Current Population Survey-Food Security Supplement. *J Hunger Environ Nutr.* 2017;12(1):1-10. doi:10.1080/19320248.2016.1227750
- Burke MP, Jones SJ, Frongillo EA, Fram MS, Blake CE, Freedman DA. Severity of household food insecurity and lifetime racial discrimination among African-American households in South Carolina. *Ethnicity & Health*. 2018;23(3):276-292. doi:10.1080/13557858.2016.1263286
- 14. Cutter SL, Boruff BJ, Shirley WL. Social Vulnerability to Environmental Hazards. *Social Science Quarterly*. 2003;84(2):242-261. doi:10.1111/1540-6237.8402002

- Jepson W, Vandewalle E. Household Water Insecurity in the Global North: A Study of Rural and Periurban Settlements on the Texas–Mexico Border. *The Professional Geographer*. 2016;68(1):66-81. doi:10.1080/00330124.2015.1028324
- 16. Lee K, Jepson W. Drivers and barriers to urban water reuse: A systematic review. *Water Security*. 2020;11:100073. doi:10.1016/j.wasec.2020.100073
- Deitz S, Meehan K. Plumbing Poverty: Mapping Hot Spots of Racial and Geographic Inequality in U.S. Household Water Insecurity. *Annals of the American Association of Geographers*. 2019;109:1-18. doi:10.1080/24694452.2018.1530587
- Meehan K, Jurjevich JR, Chun NMJW, Sherrill J. Geographies of insecure water access and the housing–water nexus in US cities. *Proc Natl Acad Sci USA*. 2020;117(46):28700-28707. doi:10.1073/pnas.2007361117
- Memmott T, Carley S, Graff M, Konisky DM. Sociodemographic disparities in energy insecurity among low-income households before and during the COVID-19 pandemic. *Nat Energy*. 2021;6(2):186-193. doi:10.1038/s41560-020-00763-9
- Feeding America. Map the Meal Gap 2020 Technical Brief.Pdf. Feeding America; 2020. Accessed October 4, 2022. https://www.feedingamerica.org/sites/default/files/2020-06/Map%20the%20Meal%20Gap%202020%20Technical%20Brief.pdf
- 21. Bohr J, McCreery AC. Do Energy Burdens Contribute to Economic Poverty in the United States? A Panel Analysis. *Social Forces*. 2020;99(1):155-177. doi:10.1093/sf/soz131
- 22. Liese AD, Sharpe PA, Bell BA, Hutto B, Stucker J, Wilcox S. Persistence and transience of food insecurity and predictors among residents of two disadvantaged communities in South Carolina. *Appetite*. 2021;161:105128. doi:10.1016/j.appet.2021.105128
- 23. Bird S, Hernández D. Policy options for the split incentive: Increasing energy efficiency for low-income renters. *Energy Policy*. 2012;48:506-514. doi:10.1016/j.enpol.2012.05.053
- Matisziw TC, Murray AT, Grubesic TH. Exploring the vulnerability of network infrastructure to disruption. *Ann Reg Sci.* 2009;43(2):307-321. doi:10.1007/s00168-008-0235-x